a2 United States Patent

US009240030B2

(10) Patent No.: US 9,240,030 B2

Dharmapurikar (45) Date of Patent: Jan. 19, 2016
(54) METHOD AND MECHANISM FOR USPC ottt 345/522
PERFORMING BOTH SERVER-SIDE AND See application file for complete search history.
pp p ry
CLIENT-SIDE RENDERING OF VISUAL DATA
(75) Inventor: Makarand Dharmapurikar, Fremont, (56) References Cited
CA (US) U.S. PATENT DOCUMENTS
(73) Assignee: Google Inc., Mountain View, CA (US) 6,377,257 BL* 4/2002 Borreletal.cccooe... 345/419
8,035,636 B1 10/2011 Yang
(*) Notice: Subject to any disclaimer, the term of this %883; 8(1)3(1)3 ég ﬁ} g; %883 PDeaC(_’Ck etal.
. . eering
patent is extended or adjusted under 35 2006/0082583 Al 4/2006 Leichtling et al.
U.S.C. 154(b) by 655 days. 2006/0125848 Al 6/2006 Alcorn et al.
2009/0138544 Al* 52009 Wegenkittl etal. 709/203
(21) Appl. No.: 13/491,930 2009/0144775 Al 6/2009 Rosin et al.
2009/0189891 Al* 7/2009 Riveraetal. 345/419
(22) Filed: Jun. 8, 2012 2011/0010455 AL* 12011 Wolfe etal. ..cccccvcrrees 709/226
(65) Prior Publication Data OTHER PUBLICATIONS
US 2013/0147819 A1 Tun. 13, 2013 International Search Report and Written Opinion dated Aug. 10,
2012, for International Patent Application No. PCT/US 12/41521.
Related U.S. Application Data
* cited by examiner
(60) Provisional application No. 61/495,147, filed on Jun. Y
9,2011.
Primary Examiner — Edward Martello
(51) Imt.ClL
GO6T 1720 (2006.01) (57) ABSTRACT
GO6T 9/00 (2006.01)
HO04N 19727 (2014.01) Disclosed isan apprgach for prov@mg animproved approach
or rendering graphics that can utilize both server-side ren-
(52) US.CL for rendering graphics th lize both d
CPC ... GO6T 1/20 (2013.01); GO6T 9/00 (2013.01); dering and client-side rendering for the same display frame.
HO4N 19727 (2(’)14.1 1); GO6T 200/1¢ ~ Inthis way, the different visual objects within the same frame
(2013.01) can be rendered using either approach, either at the server or
(58) Field of Classification Search at the client.

CPC GO6T 15/005; GO6T 1/20; GO6T 2210/32;
GOGF 9/5044; GOGF 3/1288; GOGF 3/1289

Server 308

CPU and GPU

34 Claims, 15 Drawing Sheets

1322
/

===

Video for Objects

1302a

1and2 Video Decoder
1306a

CPU 1302b
|

A
Video Data for
Client Decoder

i?a?}r/]:i:ss Graphics Data
_ f lient GP
el or Client GPU

o

il | Render
Target 1080

Graphics for Object 3 GPU 1306b

US 9,240,030 B2

Sheet 1 of 15

Jan. 19, 2016

U.S. Patent

901
Japooaq 08pIA

OLL OSPIA

| 9inbi4

ecol
Ndo pue

o | (11

801 Joaneg

US 9,240,030 B2

Sheet 2 of 15

Jan. 19, 2016

U.S. Patent

9901 NdO

Z1l solydeis

Z 91nBi14

e | [|UJ[]1

801 Joaneg

US 9,240,030 B2

Sheet 3 of 15

Jan. 19, 2016

U.S. Patent

00¢€

q90€ NdO

E90¢
Japooaq 08pIA

Z1l solydeis

zze e

OLL OSPIA

¢ 91nBi14

0ce

Dﬁ_mu H.‘_O__O ‘_O.._.] w_w\A_mC(

ejeq soiydeio wM.VEQSO
18p029 (@ 1WBID
10} eje 08pIA

A 4
gco¢ NdD
EeC0¢
Ndo pue ndo |[© ::::
20¢ Janles

US 9,240,030 B2

Sheet 4 of 15

Jan. 19, 2016

U.S. Patent

¥ 21nbi14

¥ 1 Jusld je sebewr asodwo)

91y
8Ly NdD Uim 18PO0BP LM
ejep soiydelb Bjep 09pIA
$S820.d SS820.d
A
Zlv eep Olv eiep
solydesb pueg OBpIA pUSS

%

%

80+ soiydeub
10 0BpIA pUBS 0] Jayjaym aploa(

90¥ aWel} Ul s108[qo Jo} wloped

%

Y0y Wa)sAs AoAaing

a

20t 1senbal anlg0ay

US 9,240,030 B2

Sheet 5 of 15

Jan. 19, 2016

U.S. Patent

¢ |G Elep 09pIA pusg

A

015 eyep saiyde.d pusg

¢,81S00 O3pIA Uey]

ON

$59| $1509 so1ydels

90g s1s00
so1yde.b pue ospia sulLLBIBQ

¥0S
¢saiydeub Buuspual

G ainbi4

ON

Jo s|geded Nd9

20§ co_Hme_,Eoo
JusIo pue eep ozAjeuy

US 9,240,030 B2

Sheet 6 of 15

Jan. 19, 2016

U.S. Patent

9 9.nBi14

019

soiydeub 1o oapIA
puas 0] Jayaym
uoneuIwIa)ep
e

A

809 elep
[EOLIOISIY MBIASY

A

909

a|qe|ieAe/papasu
uonendwoo
NdO %98YD

*

709
a|ge|iene/papasu
Aowaw
Ndo sulwiseg

*

209 swsjgoid NdO
umouy| Joj }osyn

US 9,240,030 B2

Sheet 7 of 15

Jan. 19, 2016

U.S. Patent

0c.

sjuswalinbal yipimpueq soiydelb 01 sjuswalinbal yipimpueq 0spIA aiedwod)

A

9|/ BIEP M8U puss 0} JuswaJlinbal
yipimpueq solydeuB ayejnoen

A

1/ Juss
80 0} SPasu ey} Bjep Mau sjen|eAd

[A%)
sjuswauinbal ypimpueqg saiydelb suiwiaiaq

A

90/ elep |oxid puss 0} JuswaJinbal

IPIMPUE] 0BPIA B}EINJ[ED
A

0/ 109[qo Jo}
Ae|dsip 01 sjoxid JO Jaguinu a)enjeang

Z0/ suswaJinbal yipimpueq 0spIA suIlIBIa(

] 9.1nBi4

US 9,240,030 B2

Sheet 8 of 15

Jan. 19, 2016

U.S. Patent

908

09pIA SnsJoA solydelb bumiwsuel
10 AouaIo1e dAIEBa) BUIWILBIR(

4

08 SPUBWIWO9

solydelb yum pajeroosse
sjexid Jo Jeaquinu Auap|

4

Z08 spuewwod soiydeub Ajijusp|

g 9.nbi14

US 9,240,030 B2

Sheet 9 of 15

Jan. 19, 2016

U.S. Patent

806
s199[qo 03 sjoxid jo Jaqwinu depy

4

006 S|exid Jo s10j09 Yoeq pesy

4

06 19b64e] Jopus.
0] Spuewwo? saiydesb meiq

4

206 108lqo ue

Y)IM 10|09 B 8)BI00SSE 0] Weal)s
PUBLIWIOD Ul 8)21S PSPOD 1I8sU|

6 9.1nbBi14

US 9,240,030 B2

Sheet 10 of 15

Jan. 19, 2016

U.S. Patent

8001

9001

v001

L— [¢ 11e9 10} s}oalqo Bulio]09d 10) dje)s mau jasu|]

¢ 91e)S Jo) 91e)s dn 198

¢ |29 mei(

L— [z 1189 10} s309lqo BulLiojod 10j 9)els mau uasuj]
Z ||e2 Joy aes dn 189g

Z 1leo meliQq

| [1 11e9 104 syo9lqo Huliojod 10j ajels mau uasuj]
L ||1e2 Jo} 9)e1S dn 189S
L 1IeD Melq

VOl @inBi4

¢001

¢ 91e)S Jo) 91e)s dn 198

¢ |29 mei(

Z ||ed Jo) aers dn 1eg

Z 1leo meliQq

L 11eo Joj sje)s dn jog
L 11D melq

US 9,240,030 B2

Sheet 11 of 15

Jan. 19, 2016

U.S. Patent

0801

AN
\

o
NA’

2 199[00 \

| 10800

P [€ 11e9s 10} s300lqo Bulioj0d 10) 93e)S mau uasu|]

¢ 91e)S Jo) 91e)s dn 198

¢ |29 mei(

| [Z 1es 10} s309lqo Buliojod 10j aje)s mau uasuj]

| Z |1e2 Joy 91e1s dn 198

Z 1leo meliQq

——————————— [1189 10} s}99lqo BuLioj0d 10j d)e)s mau uasu|]

L ||ed Jo) 91e1S dn 1898
L 118D melg

g0l @4nbi4

US 9,240,030 B2

Sheet 12 of 15

Jan. 19, 2016

U.S. Patent

Junoy |exid ybiH
= ¢ 109[g0 104 UnoY [89xid

UN0D 19Xl MO
= ¢ 199[q0 104 3unog |exid

UN0YD |9Xld MO
= | 1090 104 unoY |exid

T~ 1unog jaxid

¢80l

uonejodenxa
pue

001 2inbi4

€ 109[q0

| ¢ 19lgo

| 10800

US 9,240,030 B2

Sheet 13 of 15

Jan. 19, 2016

U.S. Patent

¢ 199lq0 Joy soiydet puss

A

¥801

Z 193[qQ J0} 08pIA puss

A

Junoy exid ybiH
= ¢ 109[gO 104 U0y [8xid

| 108[qQ JoJ 08PIA pusSS

sIsAjleuy
Aouaioiyg

UN0D 19Xl MO
= Z 199[q0 104 3uno9 [exid

A

aol a@inbi4

UN0D 19Xl MO
= | 1090 104 U0y [89xid

US 9,240,030 B2

Sheet 14 of 15

Jan. 19, 2016

U.S. Patent

0801 10b1e]

Japusy ~— |

O a
A
0zel
Ndo w8l 10} —1 sisAleuy
ejeq solydein mu_caEO

Jspoos(] usiD
10} €1E(09PIA

A 4

NNQ\

301 @4nbi4

1
q90¢l Nd9 _ € #Om_.QO JoJ mo_r_n_m._mu qz0oel Nd2
B90E} BZ0E) o
JapooaQ 09pIA 2 DUE | NdO pue Ndo
810890 Jo} 08pIA
80¢ IoAIDS

US 9,240,030 B2

Sheet 15 of 15

Jan. 19, 2016

U.S. Patent

(434!
ad
>
Aury
SUOTIEITUNIWO))
Sivl
1444t 334!
oorJION] LO¥T ooR IO
SUOIBOTUNUIIO,) (s)10850001g BB
A A A
y A A
90F1 Ssnd
A A A
y A A
0PI 60v1 80P
01A8(q WOY KIOWdIA]
o8v10)g Urey
IT "OId

Ievl

414!
201A9(J

mduy

R824
Keydsig

001

US 9,240,030 B2

1
METHOD AND MECHANISM FOR
PERFORMING BOTH SERVER-SIDE AND
CLIENT-SIDE RENDERING OF VISUAL DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. Provi-
sional Application 61/495,147, filed on Jun. 9, 2011, which is
hereby incorporated by reference in its entirety.

FIELD

The invention relates to the field of remote rendering.

BACKGROUND

3D Graphics rendering systems, such as gaming PCs and
gaming devices follow a standard architecture that typically
includes:

1. CPU subsystem—it includes the main processor,

memory and storage

2. Graphics subsystem—it includes the graphics processor

(GPU) and associated memory

3. A Display subsystem that is connected to the GPU

The CPU subsystem and the GPU subsystem are connected
through a high speed bus, such as PCI, AGP or PCI-Express.
The GPU subsystem is connected to the Display through
another high speed interface such as HDMI, DVI, or Display
Port. The role of these components can be thought of as the
CPU being responsible for describing the content at an
abstract level and the GPU is responsible for rendering the
content in a pixel form. The Display is responsible for visu-
ally showing the pixels to the user.

Typically, the main program generating the graphics, such
as a game program, is run on the CPU where the game
program listens to user input from keyboard or game pad. The
game program executes the game logic and then sends com-
mands to the GPU telling the GPU how to create a picture
(also called as frame) that will be shown on the Display. This
process is repeated several times every second to create an
appearance of smooth motion on the Display. Typically it is
repeated 30 times a second. This figure is also knows as
refresh rate.

Itis GPU’s job to execute the commands sent by the CPU.
Commands can be roughly categorized as “simple com-
mands” that GPU can execute by itself, “indirect commands™
that refer to data residing in the CPU’s memory (known as
System Memory), or commands that read the data generated
by the GPU.

Typically the volume of data going from the CPU to GPU,
and the system memory to GPU, far outweighs the data com-
ing from the GPU to CPU. The performance of the GPU, and
therefore the quality of the gaming experience, is directly
proportional to the number of frames the GPU can process per
second. The data transfer bandwidth between the CPU/Sys-
tem Memory and the GPU plays a crucial role in this perfor-
mance. Ifthe interface between the CPU and GPU is slow, this
data transfer can be a bottleneck that will hurt performance.
The pace of innovation in this interface (ISA, PCI, AGP, PCIE
1.0, PCIE 2.0, PCIE 3.0) has been brisk. A typical gaming
system today has bandwidth of up to 4 Gbytes/Second.

The nature of the CPU-GPU and the GPU-Display inter-
face has required that the CPU, GPU and Display be part of
the same system to guarantee the best performance. This

10

15

20

25

30

35

40

45

50

55

60

65

2

limitation has implications for system design, such as power
consumption, size, portability, cooling requirements and
noise.

For these and other reasons, there is interest in the graphics
community to find ways physically to separate the CPU, GPU
and Display, in a way that does not require re-writing of
applications. Possible solutions range from physical separa-
tion at the electrical level, to software solutions that operate at
higher levels.

The problem becomes even more complicated in a net-
worked environment, in which the user may be remote from a
server that houses the main program which generates the
graphics. For example, many of the most popular modern
applications are interactive multi-user games applications, in
which the users’ computing systems are connected by a net-
work to a centralized game program on a remote server. The
user interacts with the game program by providing inputs
from the user’s local computer system, but the visual contents
that are seen by the user are instituted by the operations of the
remote game program on the server, which are then locally
displayed to the user on the user’s local display device.

One possible approach to implement this type of net-
worked system is to require the CPU and GPU at the server to
generate and render video data at the server-side that will be
sent to the client computer, and which will utilize the video
decoder at the client to be displayed at the client-side. This
approach is shown in FIG. 1, in which the CPU and GPU
processors 102a located at the server 108 take on the entirety
of'the work needed to render the display graphics, so that only
a stream of video display pixels 110 are sent to the client to be
displayed by the video decoder 106a at the client.

Alternatively, remote rendering may be employed to off-
load some of the rendering workload to the client. This
approach is shown in FIG. 2, in which the CPU 1025 at the
server 108 is responsible for operating the game logic, but it
is the GPU 1065 at the client that takes care of processing
graphics data 112 sent from the server 108 to locally render
visual graphics to be displayed to the user.

Each of these approaches has its own specific advantages
and disadvantages. For example, if the local GPU is exces-
sively underpowered (e.g., inadequate processor speed) or
has insufficient system resources (e.g., insufficient memory),
then the display performance using the approach of FIG. 2
may be much less desirable than the approach of FIG. 1. On
the other hand the approach of FIG. 2 may provide much
better performance than the approach of FIG. 1 under certain
circumstances that can take advantage of the local GPU, e.g.,
display frames which do not undergo many changes will
require much less network bandwidth in the approach of FI1G.
2 compared to the approach of FIG. 1. While each approach
has its own set of advantages compared to the other, there are
no existing systems that can combine the best advantages of
both into a single system.

SUMMARY

Some embodiments of the present invention provide an
improved approach for rendering graphics that can utilize
both server-side rendering and client-side rendering for the
same display frame. In this way, the different visual objects
within the same frame can be rendered using either approach,
either at the server or at the client.

Further details of aspects, objects, and advantages of the
invention are described below in the detailed description,
drawings, and claims. Both the foregoing general description

US 9,240,030 B2

3

and the following detailed description are exemplary and
explanatory, and are not intended to be limiting as to the scope
of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example approach for performing
server-side rendering.

FIG. 2 illustrates an example approach for performing
client-side rendering.

FIG. 3 illustrates an example architecture for performing
both server-side and client-side rendering.

FIG. 4 illustrates a flowchart of an approach for performing
both server-side and client-side rendering.

FIG. 5 illustrates a flowchart of an approach for determin-
ing whether to perform server-side and client-side rendering
for an object.

FIG. 6 illustrates a flowchart of an approach for determin-
ing whether a client-side GPU is capable of rendering an
object.

FIG. 7 illustrates a flowchart of an approach for determin-
ing costs of performing server-side and client-side rendering.

FIG. 8 shows a flowchart of an approach for estimating
costs of server-side versus client-side rendering.

FIG. 9 shows a flowchart of an approach for evaluating the
number of pixels associated with graphics commands.

FIGS. 10A-E illustrate an approach for performing both
server-side and client-side rendering.

FIG. 11 depicts a computerized system on which an
embodiment of the invention can be implemented.

DETAILED DESCRIPTION

Some embodiments of the present invention are directed to
an improved approach for rendering graphics that can utilize
both server-side rendering and client-side rendering for the
same display frame. In this way, the different visual objects
within the same frame can be rendered using either approach,
either at the server or at the client.

FIG. 3 illustrates an example architecture 300 which may
be employed in some embodiments of the invention to render
graphics across a network. Architecture 300 may include one
or more users at one or more client station(s) 322 that operate
or utilize a central program at a server 308. Such central
programs include, for example, networked game programs.
Client station 322 comprises any type of computing station
that may be used to operate or interface with a central pro-
gram at server 308. Examples of such client stations 322
include for example, workstations, personal computers,
remote computing terminals, or dedicated gaming platforms.

The client station 322 comprises a display device, such as
a display monitor, for displaying visual graphics to users at
the client station 322. Client station 322 also comprises one or
more input devices for the user to provide operational control
over the activities of client station 322 and architecture 300,
such as a mouse or keyboard to manipulate a pointing object
in a graphical user interface.

The client station 322 comprises both a video decoder 306a
and a GPU 3065. The video decoder 306a can be used to
display a stream of video data 110 in any suitable video
format. The GPU 3065 can be used to render graphics at the
client station 322 based upon graphics data 112.

The server 308 comprises a graphics analysis module 320
that includes components to analyze the visual data intended
to be displayed by a central program, and to determine
whether the visual data should undergo rendering at the server
308 or remote rendering at the client station 322.

10

15

20

25

30

35

40

45

50

55

60

65

4

If the graphics analysis module 320 determines that local
rendering should be performed at the server 308, then the
combination of the CPU and GPU 3024 at the server 308 is
employed to render the graphics. The server-based CPU
would describe the visual content at an abstract level and the
server-based GPU would render the content in a pixel form
into video data 110. The video data 110 is sent to the client
station 322, where the client-based video decoder 306a pro-
cesses the pixel data for display on the client’s display device.

Ifthe graphics analysis module 320 determines that remote
rendering should be performed at the client station 322, then
the CPU 3025 at the server 308 is employed to generate
graphics data 112 at an abstract level (e.g., using graphics
commands with vector data rather than raster data), and the
graphics data 112 is sent to the client station 322. The client-
based GPU 3065 processes the graphics data 112 to render the
visual content in a pixel form, which is then immediately
displayed on the client’s display device.

According to some embodiments of the invention, the
graphics analysis module 320 can operate to mix and match
how objects even within the same frame are rendered. Thus,
the same frame may include some objects that are rendered at
the server 308 using the server-based CPU and GPU 302a,
while other objects are rendered at the client 322 using the
client-side GPU 30654.

FIG. 4 shows a flowchart of an approach for implementing
mixed server-client rendering according to some embodi-
ments of the invention. At 402, a request is received to display
visual content at the client station. The request comprises any
suitable set of operations or commands that relates to visual
content that would need to be rendered for display at the client
station. For example, in the gaming context, the request could
result from the game software determining that the visual
scene to be displayed to the user needs to be changed in some
way.

At 404, a survey is performed of the architecture/system to
determine the capabilities of the system for performing
either/both server-side rendering or client-side rendering. For
example, this action can be taken to identify the specific GPU
that exists at the client station or to determine the status or
resource availability (e.g., GPU memory) of the GPU at the
client station.

For the objects in the frames to be displayed, the actions of
406 are performed to determine, at 408, whether server-side
rendering or client-side rendering is to be performed. For
server-side rendering, the CPU and GPU at the server are
employed to render the pixel data, and therefore the resultant
video data is streamed to the client as described at 410. For
client-side rendering, the CPU at the server is used to provide
an abstract determination of the visual display, but graphics
data is sent to the client station for rendering by the client-
based GPU as described at 412.

As used herein, the term “object” refers to any suitable
granularity of data for rendering. For example, the object
could comprise any object or entity to be displayed on a
screen, e.g., a discrete object (such as an action figure) within
a display frame. The object could also correspond to an area
of'display real estate having a bounded set of coordinates. The
object could also correspond to a specific command/API
function call (or a set of such commands/calls) that relates to
display of an entity on the screen).

Certain objects will naturally lend themselves to be more
efficiently handled one way versus the other. For example, it
is likely that background scenes that do not change very often
will be more efficiently rendered using the client-based GPU.
This is because the data for the background objects will likely
already reside at the client-side memory cache, and any

US 9,240,030 B2

5

changes in the display will likely only differ in terms of the
viewing angle or position for the background objects rather
than any actual changes in the objects themselves. Therefore,
compared to the relatively high cost of sending server-ren-
dered pixel data across the network for the background
objects (requiring high network bandwidth), it would be
much cheaper to send the graphics data comprising only the
commands/calls to display the background objects from a
different angle (which requires low network bandwidth) and
to allow rendering to occur at the client with the client-based
GPU.

On the other hand, objects that are subject to a larger
amount of dynamic visual changes (e.g., because of anima-
tion) may lend themselves to be more efficiently handled by
server-side rendering. This is because in this situation, the
cost of sending a stream of server-rendered pixels as video
data may be cheaper than sending a stream of vector data
(which is also dynamically changing) and which then needs
to be rendered at the client.

Regardless, it is likely that some of the objects will be
rendered at the client side and some rendered at the server
side. At 414, the image frames are composed from the differ-
ent sets of data sent to the client. In particular, at 416, the
video data is processed for display by the client-side video
decoder. At 418, the graphics data is processed with the client-
side GPU.

FIG. 5 shows a flowchart of an approach for determining
whether server-side rendering or client-side rendering is to be
performed. At 502, analysis is performed of the data and
client configurations. This action involves an analysis of the
visual data to be rendered as well as the details of the GPU
resources at the client.

At 504, a determination is made whether the GPU is
capable of rendering the visual data. If not, then the process
proceeds to 512 to perform server-side rendering so that video
data is sent to the client.

If the GPU is intrinsically capable of rendering the visual
data, an additional determination is made at 506 of the costs
for performing the server-side rendering and the client-side
rendering. According to some embodiments, the costs for
both approaches would be calculated using a common unit of
measurement to facilitate comparisons. For example, the
costs cold be calculated in some embodiments in units of “bits
per second.”

At 508, a comparison of the different costs is performed to
determine which approach provides a relatively more effi-
cient mechanism to render the visual data. If the server-side
rendering costs are relatively less expensive, then server-side
rendering is performed to send video data to the client at 512.
On the other hand, if client-side rendering costs are relatively
less expensive, then graphics data is sent to the client at 510 so
that the client-side GPU can be used to performed client-side
rendering.

FIG. 6 shows a flowchart of an approach for determining
whether the GPU is capable of rendering the visual data for a
given object or set of objects in a frame. At 602, a check is
made whether there are any known problems for the specific
GPU type/model at the client that would prevent the client
GPU from performing the desired rendering activities. For
example, it is possible that there are known bugs with certain
GPUs that negatively affect the GPU’s ability to implement
certain types of rendering operations. If the desired rendering
of the current set of visual data relates to these known bugs,
then this situation would weight against performing client-
side rendering.

At 604, statistics monitoring is performed to determine the
amount of GPU memory that is available at the client. A

10

15

20

25

30

35

40

45

50

55

60

65

6

determination is also made of any additional GPU memory
that may be required if client-side rendering is performed. For
example, if data for the object to be displayed is already
within the GPU memory cache and it did not change, then
minimal or no additional memory may be needed. On the
other hand, if the data for the object is not already within the
GPU memory or if that data has changed, then additional
GPU memory may be needed. If the available GPU memory
is insufficient to handle additional memory requirements to
perform client-side rendering, then server-side rendering is
performed.

At 606, a check is made of the available GPU computation
resources, as well as the computation needs to perform client-
side rendering. In some embodiments, this action is per-
formed by checking the current percentage of GPU utilization
and comparing the “busy” percentage to the expected GPU
utilization needed to perform the desired client-side render-
ing. If the required resource consumption exceeds the avail-
able resources, then server-side rendering is performed.

Historical data may also be checked at 608 to determine
whether there are additional factors that need to be considered
to see if an object is renderable at the client. For example, the
expected GPU processor and memory utilization levels for
certain objects that have successfully passed the checks of
604 and 606 may nevertheless have historically resulted in
sub-optimal display performance in the past. Therefore, in
some embodiments, historical analysis can also be used to
determine whether an object should or should be rendered at
the client.

At 610, the above factors are considered to determine
whether the client-side GPU is capable of rendering the dis-
play object.

Any suitable approach can be taken to perform costs cal-
culations for server-side and client-side rendering. For
example, costs can be determined according to the bandwidth
utilization needs of each approach. FIG. 7 shows a flowchart
of an approach for determining and comparing the costs of
performing client-side and server-side rendering when con-
sidered according to the bandwidth utilization needs of each
approach. The path 702 along the left side of the flowchart
corresponds to determination of the server-side rendering
costs and the path 712 along the right side of the flowchart
corresponds to determination of the client-side rendering
costs.

To determine server-side rendering costs, path 702 is per-
formed by first evaluating, at 704, the number of pixels that
need to be displayed for the object (or set of objects) under
examination. This action can be performed by identifying the
size/configuration of the object in question, and then deter-
mining the number of pixels. For example, an object that is
bound by a rectangular box of 100 pixels by 100 pixels
corresponds to a total of 10000 pixels. Next, at 706, calcula-
tions are performed to determine the bits/second bandwidth
needs to transmit those identified pixels in a given period of
time.

To determine client-side rendering costs, path 712 is per-
formed by evaluating, at 714, the quantity of graphics data
that would need to be transmitted to the client to allow ren-
dering to occur at the client. If the graphics data for the object
that is needed for the desired rendering operations already
reside at the client side (and there are no or minimal changes
to that data), then only a small amount of data may need to be
sent across the network from the server to the client. On the
other hand, for visual display of animation, it is possible that
the object data may be changing frequently, which means that
a very large amount/rate of graphics data would need to be
sent to the client to allow the desired rendering to occur with

US 9,240,030 B2

7

the client GPU. At 716, calculations are performed to deter-
mine the bits/second bandwidth needs to transmit the quantity
of data in the given period of time.

A comparison is performed at 720 to determined the rela-
tive costs of performing the server-side and client-side ren-
dering for the object being examined. If the relative costs are
such that it is cheaper to perform client-side rendering, then
graphics data will be sent from the server to the client so that
the client-side GPU is used to render the visual data. On the
other hand, if the relative costs are such that it is cheaper to
perform server-side rendering, then the server-side GPU is
used to render the visual data, and therefore video data will be
sent from the server to the client so that the client-side video
decoder is used to only display the data.

The above-actions are performed successively for the dif-
ferent objects in a frame so that the optimal mixture of client-
side and server-side rendering is performed to render and
display the visual data.

This document will now describe an advanced approach
for determining whether to use client-side and server-side
rendering for rendering drawing objects. The general idea is
that a cost function will be applied to determine the relative
efficiencies of either approach for a given object to be drawn
in an image frame. In some embodiments, the cost function is
based at least in part on the number of pixels associated with
the object to be drawn and the amount of relative bandwidth
that is consumed by either approach to display those pixels at
the client.

FIG. 8 shows a flowchart of this approach for estimating
costs of server-side versus client-side rendering, according to
some embodiments of the invention. At 802, the graphics
commands are identified that will be analyzed to determine
whether to use server-side versus client-side rendering. This
action looks at an image frame to be displayed at the client,
and identifies the graphics commands that are associated with
that image frame.

Next, at 804, an evaluation is performed to identify the
number of pixels that are expected to be displayed as a result
of executing the graphics commands. As previously dis-
cussed, the number of pixels will affect the amount of band-
width that is consumed to display those pixels at the client.
This is because there is a potential tradeoff between the band-
width required to send graphics commands to render those
pixels at the client versus the bandwidth needed to send
pre-rendered pixels as video to be displayed at the client.

At 806, the number of pixels is used to determine the
relative efficiency of for transmitting the image frame as
either graphics or video. For example, one possible approach
is to evaluate efficiency using the following equation:

Efficiency=(Number of visible pixels)/(bandwidth
needed to transmit pixels)

If the efficiency value derived from this equation is at or
above a specified threshold, then the frame is sent as graphics
to be rendered at the client. On the other hand, if the efficiency
measure is less than the threshold value, then the image frame
is rendered at the server, and the image frame is rendered at
the server and sent to the client as video/pixels.

The threshold value(s) for comparison to the efficiency
value can be selected according to any set of suitable param-
eters. For example, the type and quality of the network, client
machine resources, server resources, relative server/client
workloads, and user preferences may be taken into account in
adjusting the threshold levels.

In addition, the threshold does not need to be a fixed value.
This means that the threshold value may differ across difter-
ent portions of an image frame, e.g., between background

10

15

20

25

30

35

40

45

50

55

60

65

8

image elements and foreground image elements. In addition,
the threshold may change across different image frames, on
the time of the day, or based on other factors such as whether
the image frames are being transmitted at peak network usage
times or during periods of low network usage times.

FIG. 9 shows a flowchart of an approach for evaluating the
number of pixels associated with graphics commands. At
902, special codes state(s) are inserted into the graphics com-
mand stream to associate unique colors with the different
objects in the image frame. These code states will cause the
objects to be drawn with the colors that have been designated
for those objects. In effect, each different object will now be
drawn with a color that is different from any other object.

Next, at 904, the graphics commands are executed at the
server to draw a small “render target.” A render target is a
buffer where the video card draws pixels for a scene that is
being rendered. In the current approach, the render target is an
“offscreen” render target that does not need to have the same
width and height as the eventual target display. As such, the
graphics commands are rendered in small render targets hav-
ing smaller widths and heights to very quickly draw a repre-
sentation of the image frame. The render target also has a
surface format, which describes how many bits are allocated
to each pixel and how they are divided between the different
colors.

At 906, the colors of the various pixels are identified for the
image frame. Because each object was associated with a
different color, this means that each drawn object should be
associated with pixels having a different color in the drawn
image frame in the render target. As a result, there should be
a detectable number of pixels for every color associated with
a visibly drawn object.

The number of visible pixels that correspond to each drawn
object is determined at 908. This action involves first identi-
fying the number of pixels of a given color that map to a
particularly object. Because the render target is smaller than
the eventual final image, the number of pixels would be scaled
upwards to estimate the actual number of pixels that would be
associated with each object. This estimated number of pixels
would be used, as described above, to calculate the efficiency
of performing rendering at either the server side or the client
side.

FIGS. 10A-E illustrate this approach for performing
server-side and client-side rendering. FIG. 10A shows an
initial set 1002 of graphics commands that has been identified
for analysis. As discussed above in step 902, special coded
states are inserted into the graphics commands to associated
unique colors to the different objects to be drawn. In this
example, statement 1004 is inserted to associate a first color
with an object 1 to be drawn. Similarly, statement 1006 is
inserted to associate a second color with an object 2 and
statement 1008 is inserted to associate a third color with an
object 3.

FIG. 10B illustrates the action of executing the graphics
commands to draw the image frame into a small render target
1080 on the server. In particular, objects 1, 2, and 3 have been
drawn in the small render target 1080, where each object is
associated with a color that differs from the other objects.

As shown in FIG. 10C, a pixel count 1082 is performed for
each drawn object in the render target 1080. This is accom-
plished by reading the color of each pixel in the render target
1080, and then calculating the number or percentage of pixels
for each object in the image frame. Since the size of the render
target is smaller than the expected final image frame. Extrapo-
lation is performed scale the pixel count for each object
upwards to estimate the eventual pixel count for each object 1,
2, and 3 in the image frame.

US 9,240,030 B2

9

In the current example, it can be seen that objects 1 and 2
are quite small. Therefore, in the current example, these
objects are associated with relatively low pixels counts. On
the other hand, object 3 is quite large, and is hence associated
with a relatively high pixel count.

As shown in FIG. 10D, an efficiency analysis 1084 is
performed to determine which portions of the image frame
should be rendered at the server versus being rendered at the
client. In general, a lower pixel count for an object will be
more likely to result in a determination that minimal band-
width is required to send those pixels to a client. This would
tend to result in analysis results to support server-side render-
ing, in which video is sent to the client for those low-pixel
objects. A higher pixel count for an object will more likely
result in a determination that excessive bandwidth is required
to send pixels to a client. This would tend to result in analysis
results to support client-side rendering, in which graphics are
sent to the client for those high-pixel objects.

In the current example, it was previously determined that
objects 1 and 2 are quite small and are therefore associated
with relatively low pixels counts. In the current example, this
resulted in a determination that it would be more efficient to
send these objects as video to the client. On the other hand,
object 3 is quite large and was therefore associated with a
relatively high pixel count. In the current example, this
resulted in a determination that it would be more efficient to
send object 3 as graphics to the client.

FIG. 10E illustrates this scenario, in which graphical
analysis 1320 was performed to generate the small render
target 1080 at the server 1308. The analysis results generated
by the graphics analysis 1320, as described above, resulted in
a determination that it would be more efficient to render
objects 1 and 2 at the CPU/GPU 1302a at the server 1308, so
that these objects are sent as video to the client 1322 to be
displayed at the client-side by video decoder 1306a. The
analysis results generated by the graphics analysis 1320, also
resulted in a determination that it would be more efficient to
send object 3 as graphics to the client 1322 to be rendered
client-side by GPU 13065 at client 1322.

Therefore, what has been described is an improved
approach for rendering visual data. The invention allows a
system to mix and match the different rendering approaches
so that an optimal distribution of work is provided among the
different processing components in the system. The analysis
can be performed on a frame-by-frame, object-by-object
basis. The present approach is quite advantageous in that it is
flexible and can dynamically consider the trade-offs of either
performing server-side rendering or client-side rendering.
System Architecture Overview

FIG. 11 is a block diagram of an illustrative computing
system 1400 suitable for implementing an embodiment of the
present invention. Computer system 1400 includes a bus 1406
or other communication mechanism for communicating
information, which interconnects subsystems and devices,
such as processor 1407, system memory 1408 (e.g., RAM),
static storage device 1409 (e.g., ROM), disk drive 1410 (e.g.,
magnetic or optical), communication interface 1414 (e.g.,
modem or Ethernet card), display 1411 (e.g., CRT or LCD),
input device 1412 (e.g., keyboard), data interface 1433, and
cursor control.

According to one embodiment of the invention, computer
system 1400 performs specific operations by processor 1407
executing one or more sequences of one or more instructions
contained in system memory 1408. Such instructions may be
read into system memory 1408 from another computer read-
able/usable medium, such as static storage device 1409 or
disk drive 1410. In alternative embodiments, hard-wired cir-

5

10

20

25

30

35

40

45

50

55

65

10

cuitry may be used in place of or in combination with soft-
ware instructions to implement the invention. Thus, embodi-
ments of the invention are not limited to any specific
combination of hardware circuitry and/or software. In one
embodiment, the term “logic” shall mean any combination of
software or hardware that is used to implement all or part of
the invention.

The term “computer readable medium” or “computer
usable medium” as used herein refers to any medium that
participates in providing instructions to processor 1407 for
execution. Such a medium may take many forms, including
but not limited to, non-volatile media and volatile media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as disk drive 1410. Volatile media includes
dynamic memory, such as system memory 1408.

Common forms of computer readable media includes, for
example, floppy disk, flexible disk, hard disk, magnetic tape,
any other magnetic medium, CD-ROM, any other optical
medium, punch cards, paper tape, any other physical medium
with patterns of holes, RAM, PROM, EPROM, FLASH-
EPROM, any other memory chip or cartridge, or any other
medium from which a computer can read.

In an embodiment of the invention, execution of the
sequences of instructions to practice the invention is per-
formed by a single computer system 1400. According to other
embodiments of the invention, two or more computer systems
1400 coupled by communication link 1415 (e.g., LAN,
PTSN, or wireless network) may perform the sequence of
instructions required to practice the invention in coordination
with one another.

Computer system 1400 may transmit and receive mes-
sages, data, and instructions, including program, i.e., appli-
cation code, through communication link 1415 and commu-
nication interface 1414. Received program code may be
executed by processor 1407 as it is received, and/or stored in
disk drive 1410, or other non-volatile storage for later execu-
tion. Computer system 1400 may communicate through a
data interface 1433 to a database 1432 on an external storage
device 1431.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. For example, the
above-described process flows are described with reference
to a particular ordering of process actions. However, the
ordering of many of the described process actions may be
changed without affecting the scope or operation of the inven-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than restrictive sense.

What is claimed is:

1. A computer implemented method for determining
whether to perform client-side rendering or server-side ren-
dering on visual data in a client-server system with a client
and a server, comprising:

identifying, by the server, a plurality of objects in a frame

associated with the visual data;
identifying, by the server, graphics commands for each of
the plurality of objects associated with the visual data;

determining, by the server, a number of pixels for each of
the plurality of objects to be displayed as a result of
executing the graphics commands, the number of pixels
being based on visual changes in an object of the plural-
ity of objects;

US 9,240,030 B2

11

determining, by the server, a first efficiency for each of the
plurality of objects based on rendering the visual data as
pixels at the server and transmitting the pixels to the
client;
determining, by the server, a second efficiency for each of
the plurality of objects based on transmitting and ren-
dering the visual data as pixels at the client;

determining, by the server, a relative efficiency for each of
the plurality of objects for transmitting the visual data as
pixels, the relative efficiency being a comparison of the
first efficiency to the second efficiency;

upon determining the relative efficiency for the object of

the plurality of objects meets or exceeds a threshold
value, sending, by the server, the visual data for the
object of the plurality of objects as graphics commands
to be rendered at the client; and

upon determining the relative efficiency for the object of

the plurality of objects falls below the threshold value,
rendering, by the server, the visual data for the object of
the plurality of objects at the server and sending, by the
server, the rendered visual data for the object of the
plurality of objects to the client.

2. The computer implemented method of claim 1, wherein
the relative efficiency is determined by comparing the number
of'pixels to be displayed with an amount of bandwidth needed
to transmit the number of pixels to be displayed.

3. The computer implemented method of claim 1, wherein
the threshold value accounts for network type, network qual-
ity, client resources, server resources, client workloads,
server workloads, or user preferences.

4. The computer implemented method of claim 1, wherein
the threshold value varies across different portions of an
image.

5. The computer implemented method of claim 1, wherein
the visual data corresponds to an image frame.

6. The computer implemented method of claim 5, wherein
the determining the number of pixels to be displayed com-
prises:

inserting codes into the graphics commands associated

with the visual data to associate unique colors with dif-
ferent objects in the image frame;

executing the graphic commands at the server to generate

pixels for a render target;

identifying colors of the pixels generated for the render

target; and

identifying a number of visible pixels for each different

object of the image frame.

7. The computer implemented method of claim 6, wherein
the codes inserted into the graphics commands associated
with the visual data will cause the different objects in the
image frame to be drawn with colors designated for the dif-
ferent objects.

8. The computer implemented method of claim 6, wherein
the render target has a smaller width and height than an
eventual target display for the visual data.

9. The computer implemented method of claim 6, wherein
the render target has a surface format that describes a number
of bits allocated to each pixel of the pixels generated for the
render target and how the number of bits are divided between
the unique colors.

10. The computer implemented method of claim 6,
wherein identifying the number of visible pixels for each
drawn object of the image frame comprises:

identifying a number of pixels for a color of the unique

colors that maps to an object of the different objects; and
scaling the number of pixels for the color of the unique
colors for an eventual target display for the visual data.

20

30

35

40

45

55

60

12

11. The computer implemented method of claim 1,
wherein the identitying of the plurality of objects in a frame
associated with the visual data includes:

drawing a the frame as a rendered target having a smaller

width and a smaller height that a width and height asso-
ciated with the frame; and

identifying each of the plurality of objects in the frame

based on pixel colors.

12. The computer implemented method of claim 11,
wherein the determining of the number of pixels for each of
the plurality of objects includes scaling a number of pixels
associated with the rendered target upwards based on a size
difference between the rendered target and the frame.

13. The computer implemented method of claim 11,
wherein

the sending of the visual data for the object of the plurality

of objects as graphics commands to be rendered at the
client includes generating, by the server, graphics data
using graphics commands with vector data rather than
raster data and sending the graphics data to the client,
and

the rendering of the visual data for the object of the plural-

ity of objects at the server includes rendering the object
of the plurality of objects in a pixel form into video data.

14. The computer implemented method of claim 11,
wherein sending, by the server, the visual data includes both
sending rendered visual data and sending commands to be
rendered at the client.

15. A computer program product comprising a non-transi-
tory computer readable medium, wherein the computer read-
able medium comprises executable program code for imple-
menting a method for determining whether to perform client-
side rendering or server-side rendering on visual data in a
client-server system with a client and a server, the method
comprising:

identifying, by the server, a plurality of objects in a frame

associated with the visual data;
identifying, by the server, graphics commands for each of
the plurality of objects associated with the visual data;

determining, by the server, a number of pixels for each of
the plurality of objects to be displayed as a result of
executing the graphics commands, the number of pixels
being based on visual changes in an object of the plural-
ity of objects;

determining, by the server, a first efficiency for each of the

plurality of objects based on rendering the visual data as
pixels at the server and transmitting the pixels to the
client;
determining, by the server, a second efficiency for each of
the plurality of objects based on transmitting and ren-
dering the visual data as pixels at the client;

determining, by the server, a relative efficiency for each of
the plurality of objects for transmitting the visual data as
pixels, the relative efficiency being a comparison of the
first efficiency to the second efficiency;

upon determining the relative efficiency for the object of

the plurality of objects meets or exceeds a threshold
value, sending, by the server, the visual data for the
object of the plurality of objects as graphics commands
to be rendered at the client; and

upon determining the relative efficiency for the object of

the plurality of objects falls below the threshold value,
rendering, by the server, the visual data for the object of
the plurality of objects at the server and sending, by the
server, the rendered visual data for the object of the
plurality of objects to the client.

US 9,240,030 B2

13

16. The computer program product of claim 15, wherein
the relative efficiency is determined by comparing the number
of'pixels to be displayed with an amount of bandwidth needed
to transmit the number of pixels to be displayed.

17. The computer program product of claim 15, wherein
the threshold value accounts for network type, network qual-
ity, client resources, server resources, client workloads,
server workloads, or user preferences.

18. The computer program product of claim 15, wherein
the threshold value varies across different portions of an
image.

19. The computer program product of claim 15, wherein
the visual data corresponds to an image frame.

20. The computer program product of claim 19, wherein
the determining the number of pixels to be displayed com-
prises:

inserting codes into the graphics commands associated

with the visual data to associate unique colors with dif-
ferent objects in the image frame;

executing the graphic commands at the server to generate

pixels for a render target;

identifying colors of the pixels generated for the render

target; and

identifying a number of visible pixels for each different

object of the image frame.

21. The computer program product of claim 20, wherein
the codes inserted into the graphics commands associated
with the visual data will cause the different objects in the
image frame to be drawn with colors designated for the dif-
ferent objects.

22. The computer program product of claim 20, wherein
the render target has a smaller width and height than an
eventual target display for the visual data.

23. The computer program product of claim 20, wherein
the render target has a surface format that describes a number
of bits allocated to each pixel of the pixels generated for the
render target and how the number of bits are divided between
the unique colors.

24. The computer program product of claim 20, wherein
identifying the number of visible pixels for each drawn object
of the image frame comprises:

identifying a number of pixels for a color of the unique

colors that maps to an object of the different objects; and
scaling the number of pixels for the color of the unique
colors for an eventual target display for the visual data.

25. A server configured to determine whether to perform
client-side rendering or server-side rendering on visual data
in a client-server system with a client and the server, the
server comprising:

a memory that holds executable program code; and

a processor capable of executing the executable program

code, wherein the executable program code comprises

code for:

identifying a plurality of objects in a frame associated
with the visual data;

identifying graphics commands for each of the plurality
of objects associated with the visual data;

determining a number of pixels for each of the plurality
of objects to be displayed as a result of executing the
graphics commands, the number of pixels being based
on visual changes in an object of the plurality of
objects;

20

40

45

50

14

determining a first efficiency for each of the plurality of
objects based on rendering the visual data as pixels at
the server and transmitting the pixels to the client;

determining a second efficiency for each of the plurality
of objects based on transmitting and rendering the
visual data as pixels at the client;

determining a relative efficiency for each of the plurality
of'objects for transmitting the visual data as pixels, the
relative efficiency being a comparison of the first effi-
ciency to the second efficiency;

upon determining the relative efficiency for the object of
the plurality of objects meets or exceeds a threshold
value, sending the visual data for the object of the
plurality of objects as graphics commands to be ren-
dered at the client; and

upon determining the relative efficiency for the object of
the plurality of objects falls below the threshold value,
rendering the visual data for the object of the plurality
of objects at the server and sending the rendered
visual data for the object of the plurality of objects to
the client.

26. The system of claim 25, wherein the relative efficiency
is determined by comparing the number of pixels to be dis-
played with an amount of bandwidth needed to transmit the
number of pixels to be displayed.

27. The system of claim 25, wherein the threshold value
accounts for network type, network quality, client resources,
server resources, client workloads, server workloads, or user
preferences.

28. The system of claim 25, wherein the threshold value
varies across different portions of an image.

29. The system of claim 25, wherein the visual data corre-
sponds to an image frame.

30. The system of claim 29, wherein the determining the
number of pixels to be displayed comprises:

inserting codes into the graphics commands associated

with the visual data to associate unique colors with dif-
ferent objects in the image frame;

executing the graphic commands at the server to generate

pixels for a render target;

identifying colors of the pixels generated for the render

target; and

identifying a number of visible pixels for each different

object of the image frame.

31. The system of claim 30, wherein the codes inserted into
the graphics commands associated with the visual data will
cause the different objects in the image frame to be drawn
with colors designated for the different objects.

32. The system of claim 30, wherein the render target has a
smaller width and height than an eventual target display for
the visual data.

33. The system of claim 30, wherein the render target has a
surface format that describes a number of bits allocated to
each pixel of the pixels generated for the render target and
how the number of bits are divided between the unique colors.

34. The system of claim 30, wherein identifying the num-
ber of visible pixels for each drawn object of the image frame
comprises:

identifying a number of pixels for a color of the unique

colors that maps to an object of the different objects; and
scaling the number of pixels for the color of the unique
colors for an eventual target display for the visual data.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,240,030 B2 Page 1 of 1
APPLICATION NO. : 13/491930

DATED : January 19, 2016

INVENTORC(S) : Makarand Dharmapurikar

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 12, line 4, in claim 11, delete “a the™ and insert -- the --, therefor.

Signed and Sealed this
Tenth Day of May, 2016

Debatle 7

Michelle K. Lee
Director of the United States Patent and Trademark Office

